Abstract

BackgroundSmall interspersed elements (SINEs) are transcribed by RNA polymerase III (Pol III) to produce RNAs typically 100–500 nucleotides in length. Although their RNA abundance can be evaluated by Northern blotting and primer extension, the nature (sequence, exact length, and genomic origin) of these RNAs cannot be revealed by these methods. Moreover, mRNA sequencing (mRNA-seq) is not able to distinguish bona fide SINE RNAs or SINE sequences present in longer transcripts.ResultsTo elucidate the abundance, source loci, and sequence nature of SINE RNAs, we established a deep sequencing method, designated as melRNA-seq (medium-length RNA-seq), which can determine whole-length RNA sequences. Total RNA samples were treated with 5′ pyrophosphohydrolase (RppH), which allowed ligation of an RNA adaptor to the 5′ end of intact SINE RNAs. Similarly, another adaptor was ligated to the 3′ end, followed by reverse transcription, PCR amplification, size selection, and single-end deep sequencing. The analysis of two biological replicates of RNAs from mouse spermatogonia showed high reproducibility of SINE expression data both at family and locus levels.ConclusionsThis new method can be used for quantification and detailed sequence analysis of medium-length non-coding RNAs, such as rRNA, snRNA, tRNAs, and SINE RNAs. Further, its dynamic range is much wider than Northern blotting and primer extension.

Highlights

  • Small interspersed elements (SINEs) are transcribed by RNA polymerase III (Pol III) to produce RNAs typically 100–500 nucleotides in length

  • Small interspersed elements (SINEs) are a class of retrotransposons widely distributed in eukaryotes that produce medium-length RNAs via RNA polymerase III (Pol III) transcription

  • The abundance of SINE RNAs can be analyzed by Northern blotting and primer extension, the nature of these RNAs cannot be revealed by these methods

Read more

Summary

Results

Source loci, and sequence nature of SINE RNAs, we established a deep sequencing method, designated as melRNA-seq (medium-length RNA-seq), which can determine whole-length RNA sequences. Total RNA samples were treated with 5′ pyrophosphohydrolase (RppH), which allowed ligation of an RNA adaptor to the 5′ end of intact SINE RNAs. Total RNA samples were treated with 5′ pyrophosphohydrolase (RppH), which allowed ligation of an RNA adaptor to the 5′ end of intact SINE RNAs Another adaptor was ligated to the 3′ end, followed by reverse transcription, PCR amplification, size selection, and single-end deep sequencing. The analysis of two biological replicates of RNAs from mouse spermatogonia showed high reproducibility of SINE expression data both at family and locus levels

Background
Materials and Methods
Results and Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.