Abstract

We consider a Gaussian rotationally invariant ensemble of random real totally symmetric tensors with independent normally distributed entries, and estimate the largest eigenvalue of a typical tensor in this ensemble by examining the rate of growth of a random initial vector under successive applications of a nonlinear map defined by the random tensor. In the limit of a large number of dimensions, we observe that a simple form of melonic dominance holds, and the quantity we study is effectively determined by a single Feynman diagram arising from the Gaussian average over the tensor components. This computation suggests that the largest tensor eigenvalue in our ensemble in the limit of a large number of dimensions is proportional to the square root of the number of dimensions, as it is for random real symmetric matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.