Abstract
Coffee (Coffea arabica L. cv. Catuai) seedlings with abundant small root galls caused by an unknown root-knot nematode were found in southern Costa Rica. Morphology, esterase and malate dehydrogenase isozyme phenotypes and DNA markers differentiated this nematode from known Meloidogyne spp. A new species, M. lopezi n. sp., with common name Costa Rican root-knot nematode, is suggested. Meloidogyne lopezi n. sp. is distinguished from other coffee-associated Meloidogyne spp. by size of female lips and stylet, male body length and stylet and second-stage juvenile body and tail morphology. The region of the mitochondrial genome between COII and 16S rRNA showed a unique amplicon size of 1370 bp, and digestions with restriction enzymes HinfI, AluI, DraI and DraIII revealed characteristic PCR-RFLP patterns that differed from the tropical root-knot nematode species M. arabicida, M. incognita, M. izalcoensis, M. javanica and M. paranaensis. Characterisation of the protein-coding map-1 gene and phylogenetic analyses suggested that M. lopezi n. sp. might reproduce by mitotic parthenogenesis. Phylogenies estimated using Bayesian analyses based on the region between the COII and 16S rRNA mitochondrial genes, as well as the 18S and 28S ribosomal nuclear genes, indicated that M. lopezi n. sp. is closely related to other tropical Meloidogyne spp. that infect coffee, especially M. arabicida, M. izalcoensis and M. paranaensis from Central and South America. Isozyme analyses and PCR-RFLP of the COII-16S rRNA mitochondrial gene region enable a clear diagnostic differentiation between these species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have