Abstract

The recently described antimicrobial peptide melectin (MEP, GFLSILKKVLPKVMAHMK-NH2) exhibits high antimicrobial activity against Gram-positive and Gram-negative bacteria. Here we describe the synthesis and biological activities of 23 new analogues of MEP. We studied the influence of dimerization and tetramerization (MAP-constructs of MEP) on the antimicrobial and hemolytic activities, as well as the role of Met in positions 14 and 17 of the peptide chain. Oxidation of the Met to Met(O) and Met(O2) decreases antimicrobial activity of all tested bacteria if the peptide is in the monomeric form, however, only to Staphylococcus aureus if in the form of dimer or tetramer. Dimerization and tetramerization increase the undesirable hemolytic activity of the peptides. Interestingly, substitution of Leu for Val in position 6 leads to the decrease of hemolytic activity. Introduction of the isosteric amino acid Nle into positions 14 or 17 or both leads to slight increase of hemolytic activity under preservation of high antimicrobial activities. Unfortunately, dimerization again leads to an increase of hemolytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.