Abstract

During the last years several reports have demonstrated that melatonin is a efficient free radical scavenger and general antioxidant. In addition, it has been shown that this neurohormone is able to increase the activity of glutathione peroxidase in rat brain cortex as well as the gene expression for some antioxidant enzymes in the Harderian gland of female Syrian hamster. Also, it is well known that brain cells are particularly exposed to free radicals, with antioxidant enzymes as the major defense mechanism that the brain uses to neutralize reactive oxygen species. The aim of the present study was to examine the influence of melatonin on gene expression for antioxidant enzymes in rat brain cortex. Our results clearly demonstrate that exogenously administered melatonin increases the levels of mRNA for glutathione peroxidase, copper-zinc superoxide dismutase, and manganese superoxide dismutase in this tissue. These stimulatory effects are observed after both acute and chronic treatment with this hormone, producing in the latter case the more marked increase. We therefore conclude that melatonin exerts an important role in providing indirect protection against free radical injury by stimulating gene expression for antioxidant enzymes. Consequently, melatonin could be considered as a potential therapeutic agent in some age-related neurodegenerative diseases where excessive free radical production has been implicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.