Abstract

Melatonin has been detected in numerous plant species. A particularly surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. Highest values have been determined in oily seeds and in plant organs exposed to high UV radiation. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. Other differences are related to the remarkable pleiotropy of melatonin, which exhibits properties as a growth regulator and morphogenetic factor, actually debated in terms of auxin-like effects, and as a signaling molecule that modulates pathways of ethylene, abscisic, jasmonic and salicylic acids and is involved in stress tolerance, pathogen defense and delay of senescence. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N1-acetyl-N2-formyl-5-methoxykynuramine and its secondary products. High melatonin levels in seeds may also serve antioxidative protection and have been shown to promote seed viability and germination capacity.

Highlights

  • The classic pathway of melatonin biosynthesis from tryptophan comprises four steps, decarboxylation by tryptophan decarboxylase (TDC), hydroxylation of the amine by tryptamine 5-hydroxylase (T5H) to serotonin, its N-acetylation by a serotonin N-acetyltransferase (SNAT), which catalyzes the same reaction as the nonhomologous aralkylamine N-acetyltransferase (AANAT) of vertebrates, and the final O-methylation to melatonin by N-acetylserotonin O-methyltransferase (ASMT, formerly known as hydroxymethyl O-methyltransferase, HIOMT)

  • In the case of extremely high melatonin levels in leaves, signaling mechanisms known from low-melatonin species may not be functional

  • An additional possibility of removing melatonin from the cytosol might consist in its uptake into oil bodies, which has been shown to occur in sunflower seedlings (Mukherjee et al, 2014)

Read more

Summary

Rüdiger Hardeland*

A surprising finding concerns the highly divergent levels of melatonin that vary between species, organs and environmental conditions, from a few pg/g to over 20 μg/g, reportedly up to 200 μg/g. The divergency of melatonin concentrations is discussed under various functional aspects and focused on several open questions. This comprises differences in precursor availability, catabolism, the relative contribution of isoenzymes of the melatonin biosynthetic pathway, and differences in rate limitation by either serotonin N-acetyltransferase or N-acetylserotonin O-methyltransferase. In the context of high light/UV intensities, elevated melatonin levels exceed those required for signaling via stress-related phytohormones and may comprise direct antioxidant and photoprotectant properties, perhaps with a contribution of its oxidatively formed metabolites, such as N1-acetyl-N2-formyl-5-methoxykynuramine and its secondary products.

INTRODUCTION
IDENTITY OR DIFFERENCES IN PLANT MELATONIN METABOLISM?
STRESS AND SENESCENCE
PHOTOREACTIONS AND PHOTOPROTECTION
Findings
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.