Abstract
The plant St. John's wort contains high levels of melatonin, an important biochemical that has both beneficial and adverse effects on stress. Therefore, a method for increasing melatonin levels in plants without adversely affecting their growth is economically important. In this study, we investigated the regulation of melatonin levels in St. John's wort by exposing samples to salinity stress (150 mM) and salicylic acid (0.25 mM) to augment stress tolerance. The results indicated that salinity stress significantly reduced the plant chlorophyll content and damaged the photosystem, plant growth and development. Additionally, these were reconfirmed with biochemical indicators; the levels of abscisic acid (ABA) and proline were increased and the activities of antioxidants were reduced. However, a significant increase was found in melatonin content under salinity stress through upregulation in the relative expression of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT), and N-acetylserotonin methyltransferase (ASMT). The salicylic acid (SA) treatment considerably improved their photosynthetic activity, the maximum photochemical quantum yield (133%), the potential activity of PSⅡ (294%), and the performance index of electron flux to the final PS I electron acceptors (2.4%). On the other hand, SA application reduced ABA levels (32%); enhanced the activity of antioxidant enzymes, such as superoxide dismutase (SOD) (15.4%) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) (120%); and increased polyphenol (6.4%) and flavonoid (75.4%) levels in salinity-stressed St. John's wort plants. Similarly, SA application under NaCl stress significantly modulated the melatonin content in terms of ion balance; the level of melatonin was reduced after SA application on salt-treated seedlings but noticeably higher than on only SA-treated and non-treated seedlings. Moreover, the proline content was reduced considerably and growth parameters, such as plant biomass, shoot length, and chlorophyll content, were enhanced following treatment of salinity-stressed St. John's wort plants with salicylic acid. These findings demonstrate the beneficial impact of salt stress in terms of a cost-effective approach to extract melatonin in larger quantities from St. John's wort. They also suggest the efficiency of salicylic acid in alleviating stress tolerance and promoting growth of St. John's wort plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.