Abstract

Peripheral blood samples were collected from human volunteers at 0 (5–10 min before), and at 1 and 2 h after a single oral dose of 300 mg of melatonin. At each time point, (i) the concentration of melatonin in the serum and in the leukocytes were cultured with mitogenic stimulation to determine the extent of radiation-induced genetic damage, viz., chromosome aberrations and micronuclei. For each volunteer, the results showed a significant increase in the concentration of melatonin in the serum and in the leukocytes at 1 h after the oral dose of melatonin, as compared to the sample collected at 0 h. The lymphocytes in the blood samples collected at 1 and 2 h after melatonin ingestion and exposed in vitro to 150 cGy gamma radiation exhibited a significant decrease in the incidence of chromosome aberrations and micronuclei, as compared with similarly irradiated lymphocytes from the blood sample collected at 0 h; the frequencies abserved in the cells sampled at 2 h after the ingestion of melatonin were consistently lower when compared with those collected at 1 h. The data may have important implications for the protection of human lymphocytes from the genetic damage induced by free radical-producing mutagens and carcinogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.