Abstract

Acute intestinal ischemia reperfusion (I/R) injury affects not only the intestines but also remote organs due to pro-inflammatory and tissue injurious factors. Thus, we aimed to investigate the roles of melatonin (a powerful antioxidant) and 1400W (a strong inhibitor of inducible nitric oxide) in a rat intestinal I/R injury model, since oxidative and nitrosative injury are believed to be the major causes. A total of 56 Wistar albino rats were used, with seven rats in each group. After I/R induction in the intestines by clamping/unclamping the superior mesenteric artery, we measured malondialdehyde, superoxide dismutase, glutathione peroxidase, nitric oxide, and 3-nitrotyrosine levels in lung, kidney, and liver tissues (to evaluate remote organ injury) as well as in the intestines. Study groups received melatonin, 1400W or both to examine the roles of these molecules in the pathogenesis of injury following I/R. Melatonin and 1400W had an ameliorating effect on both oxidative and nitrosative stress in the intestine and the lung against mesenteric I/R injury in rats. Moreover, each of these two agents had an inhibitory effect on oxidative injury and histopathological changes in the intestine and the lung. Furthermore, the combination of both agents (melatonin and 1400W) was more effective than either of the agents alone (P < 0.05). Melatonin and 1400W, either alone or in combination, were efficient in ameliorating experimental I/R injury of the intestines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.