Abstract

Melanism, the process of heavier melanin deposition, can interact with climate variation at both micro and macro scales, ultimately influencing color evolution in organisms. While the ecological processes regulating melanin production in relation to climate have been extensively studied, intraspecific variations of melanism are seldom considered. Such scientific gap hampers our understanding of how species adapt to rapidly changing climates. For example, dark coloration may lead to higher heat absorption and be advantageous in cool climates, but also in hot environments as a UV or antimicrobial protection mechanism. To disentangle such opposing predictions, here we examined the effect of climate on shaping melanism variation in 150 barred grass snakes (Natrix helvetica) and 383 green whip snakes (Hierophis viridiflavus) across Italy. By utilizing melanistic morphs (charcoal and picturata in N. helvetica, charcoal and abundistic in H. viridiflavus) and compiling observations from 2002 to 2021, we predicted that charcoal morphs in H. viridiflavus would optimize heat absorption in cold environments, while offering protection from excessive UV radiation in N. helvetica within warm habitats; whereas picturata and abundistic morphs would thrive in humid environments, which naturally have a denser vegetation and wetter substrates producing darker ambient light, thus providing concealment advantages. While picturata and abundistic morphs did not align with our initial humidity expectations, the charcoal morph in N. helvetica is associated with UV environments, suggesting protection mechanisms against damaging solar radiation. H. viridiflavus is associated with high precipitations, which might offer antimicrobial protection. Overall, our results provide insights into the correlations between melanin-based color morphs and climate variables in snake populations. While suggestive of potential adaptive responses, future research should delve deeper into the underlying mechanisms regulating this relationship.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.