Abstract
Myocardial injury as one of the severe complications leads to the increasing morbidity and mortality in patients with sepsis. Recent studies reported that reactive oxygen species (ROS)-mediated ferroptosis plays a critical role in the development of heart diseases. Therefore, we hypothesized that anti-ferroptosis agent might be a novel potential therapeutic strategy for sepsis-induced cardiac injury. Herein, we demonstrated that a small biocompatible and MRI-visible melanin nanoparticles (MMPP) improves myocardial function by inhibiting ROS-related ferroptosis signaling pathway. In LPS-induced murine sepsis model, after a single dose intravenously injection of MMPP treatment, MMPP markedly alleviated the myocardial injury including cardiac function and heart structure disorder through suppressing iron-accumulation induced ferroptosis. In vitro, MMPP inhibited cardiomyocyte death by attenuating oxidative stress, inflammation and maintaining mitochondrial homeostasis. Collectively, our findings demonstrated that MMPP protected heart against sepsis-induced myocardial injury via inhibiting ferroptosis and inflammation, which might be a novel therapeutic approach in future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.