Abstract

AbstractA powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine‐bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of urea–formaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized by condensation at pH 1.0 (UF‐1.0), pH 4.5 (UF‐4.5), and pH 5.0 (UF‐5.0) were fabricated. The addition of MAR to UF‐4.5 and UF‐5.0 for bonding hardwood plywood enhanced the bonding strength and reduced formaldehyde emission. For UF‐1.0, the addition of MAR adversely affected the bonding strength. However, the UF‐1.0 resin yielded the lowest formaldehyde emission of all of the UF resins in the study. The effects of the MAR addition were related to the molecular structures of the UF resins. UF‐1.0 contained a large amount of free urea, a considerable number of urons, and a highly methylene‐linked, ring‐structured higher molecular weight fraction and had a smaller number of methylol groups. Therefore, the addition of MAR was considered to cause a shortage of the methylol groups, which in turn, led to incomplete resin curing. In contrast to UF‐1.0, UF‐5.0 contained a smaller amount of free urea and a linearly structured higher molecular weight fraction and had a larger number of methylol groups. In this case, MAR was considered to effectively react with the methylol groups to develop a three‐dimensional crosslinked polymer network to enhance the bonding strength and suppress the generation of free formaldehyde to reduce formaldehyde emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.