Abstract
Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with the proliferation and activation of myofibroblasts being definite effectors and drivers. Here, increased expression of Meis1 (myeloid ecotropic viral integration site 1) is observed, predominantly in the nucleus of the kidney of CKD patients and mice, and negatively correlates with serum creatinine. Fibroblast-specific knock-in of Meis1 inhibits myofibroblast activation and attenuates renal fibrosis and kidney dysfunction in CKD models. Overexpression of Meis1 in NRK-49F cells suppresses the pro-fibrotic response induced by transforming growth factor-β1 but accelerates by its knockdown. Mechanistically, Meis1 targets protein tyrosine phosphatase receptor J (Ptprj) to block renal fibrosis by inhibiting the proliferation and activation of fibroblasts. Finally, a new activator of Ptprj is identified through computer-aided virtual screening, which has the effect of alleviating renal fibrosis. Collectively, these results illustrate that the Meis1/Ptprj axis has therapeutic potential for clinically treating CKD.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have