Abstract

SUMMARYThe (I; II) duplication strain ofAspergillus nidulanscontains a terminal segment of chromosome I twice, one copy being in the normal position, and the other one translocated to a tip of chromosome II. We show that in selfed cleistothecia (homozygous for the duplication) crossing-over between the two segments of the duplication followed by the appropriate disjunction and distribution of the meiotic chromosomes, results in segregation of recessive markers in the duplication. Alternative segregation mechanisms like the deletion mechanism responsible for mitotic non-conformity, cannot explain the observations. The average segregation frequency of the markeryA2 is 11%. Using the mathematical model outlined in the Appendix to this paper, we estimated the recombination frequency between the translocation breakpoint and theyAlocus from the segregation frequency. The essential feature of the model is the computation of the probabilities of combinations of different tetrad types in quadrivalents. Application of the model leads to the qualitative conclusion that the meiotic recombination frequency within the duplication is increased over the normal level. Elsewhere in the genome the frequencies are either unchanged or decreased. Also in crosses heterozygous for the duplication, an increase by at least a factor of two is found. As judged from the appearance of certain recombinant classes, the quadrivalent frequency in homozygous and heterozygous crosses is 2/3 (random pairing) or slightly higher. The increased recombination is attributed to the same lesions that are responsible for the occurrence of deletions in duplication strains ofA. nidulans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.