Abstract

Individuals carrying balanced constitutional reciprocal translocations generally have a normal phenotype, but often present reproductive disorders. The aim of our research was to analyze the meiotic process in an oligoasthenoteratospermic boar carrying an asymmetric reciprocal translocation involving chromosomes 1 and 14. Different multivalent structures (quadrivalent and trivalent plus univalent) were identified during chromosome pairing analysis. Some of these multivalents were characterized by the presence of unpaired autosomal segments with histone γH2AX accumulation sometimes associated with the XY body. Gene expression in spermatocytes was studied by RNA-DNA-FISH and microarray-based testis transcriptome analysis. Our results revealed a decrease in gene expression for chromosomes 1 and 14 and an up-regulated expression of X-chromosome genes for the translocated boar compared with normal individuals. We hypothesized that the observed meiotic arrest and reproductive failure in this boar might be due to silencing of crucial autosomal genes (MSUC) and disturbance of meiotic sex chromosome inactivation (MSCI). Further analysis revealed abnormal meiotic recombination (frequency and distribution) and the production of a high rate of unbalanced spermatozoa.Electronic supplementary materialThe online version of this article (doi:10.1007/s10577-016-9533-9) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.