Abstract
During male meiosis in mammals the X and Y chromosomes become condensed to form the sex body (XY body), which is the morphological manifestation of the process of meiotic sex chromosome inactivation (MSCI). An increasing number of sex body located proteins are being identified, but their functions in relation to MSCI are unclear. Here we demonstrate that assaying male sex body located proteins during XY female mouse meiosis, where MSCI does not take place, is one way in which to begin to discriminate between potential functions. We show that a newly identified protein, "Asynaptin" (ASY), detected in male meiosis exclusively in association with the X and Y chromatin of the sex body, is also expressed in pachytene oocytes of XY females where it coats the chromatin of the asynapsed X in the absence of MSCI. Furthermore, in pachytene oocytes of females carrying a reciprocal autosomal translocation, ASY associates with asynapsed autosomal chromatin. Thus the location of ASY to the sex body during male meiosis is likely to be a response to the asynapsis of the non-homologous regions [outside the pseudoautosomal region (PAR)] of the heteromorphic X-Y bivalent, rather than being related to MSCI. In contrast to ASY, the previously described sex body protein XY77 proved to be male sex body specific. Potential functions for MSCI and the sex body are discussed together with the possible roles of these two proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.