Abstract
Controversy exists regarding the meiotic behaviour of the giant sex chromosomes during spermatogenesis in the field vole, Microtus agrestis. Both univalents and bivalents have been observed between diakinesis and metaphase I. These differences seem to be dependent on the technique used. The present study employs electron microscopy of serially sectioned testes tubules and light microscopy of microspread preparations to re-examine the behaviour of sex chromosomes during meiosis. In microspreads, about one-third of the early pachytene nuclei examined showed end joining of the X and Y axes. The longitudinal heterogeneity of the chromosomes in the form of axial thickenings allowed the detection of two different end-joining patterns. In the remaining early pachytene cells as well as in all mid to late pachytene cells seen, the X and Y axes had, though near to each other, no contact in the form of a synaptonemal complex. If a synaptonemal complex is a prerequisite for genetic exchange, the sex chromosomes in M. agrestis males must be achiasmatic. The analysis of serial sections through an early pachytene and a late prophase I nucleus with the electron microscope revealed that the sex chromosomes occupied a common area. By metaphase I, the centromeres of the X and Y were oriented towards opposite spindle poles while the chromosomes remained attached to one another by their distal segments at the level of the metaphase I plate. As a consequence of the large size of the sex chromosomes their centromeres lay close to the spindle poles. In anaphase I the sex chromosomes maintained their metaphase position until the autosomes approached the spindle poles. During autosomal migration a medial constriction developed where the sex chromosomes were mutually associated, the X and Y became separated, and joined the autosomes. In metaphase II the chromatids of the sex chromosomes lay side by side and exhibited a delayed separation in the subsequent anaphase. It is suggested that heterochromatin, which represents a major part of both sex chromosomes, plays a role in the association of the two achiasmatic sex chromosomes in metaphase I and in the delayed separation of the chromatids of the sex chromosomes in anaphase II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.