Abstract

The European XFEL is an extremely brilliant Free Electron Laser Source with a very demanding pulse structure: trains of 2700 X-ray pulses are repeated at 10 Hz. The pulses inside the train are spaced by 220 ns and each one contains up to 1012 photons of 12.4 keV, while being ≤100fs in length. AGIPD, the Adaptive Gain Integrating Pixel Detector, is a hybrid pixel detector developed by DESY, PSI, and the Universities of Bonn and Hamburg to cope with these properties. It is a fast, low noise integrating detector, with single photon sensitivity (for Eγ⪆6keV) and a large dynamic range, up to 104 photons at 12.4 keV. This is achieved with a charge sensitive amplifier with 3 adaptively selected gains per pixel. 352 images can be recorded at up to 6.5 MHz and stored in the in-pixel analogue memory and read out between pulse trains. The core component of this detector is the AGIPD ASIC, which consists of 64 × 64 pixels of 200µm×200µm. Control of the ASIC’s image acquisition and analogue readout is via a command based interface. FPGA based electronic boards, controlling ASIC operation, image digitisation and 10 GE data transmission interface AGIPD detectors to DAQ and control systems. An AGIPD 1 Mpixel detector has been installed at the SPB 1 experimental station in August 2017, while a second one is currently commissioned for the MID 2 endstation. A larger (4 Mpixel) AGIPD detector and one to employ Hi-Z sensor material to efficiently register photons up to Eγ≈25keV are currently under construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.