Abstract

Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.