Abstract

Neurokinin-1 receptor (NK1R)-expressing neurones that are involved in chemoreception at the retrotrapezoid nucleus (Nattie & Li, 2002b) are also prominent at locations that contain medullary serotonergic neurones, which are chemosensitive in vitro. In medullary regions containing both types, we evaluated their role in central chemoreception by specific cell killing. We injected (2 x 100 nl) (a) substance P-saporin (SP-SAP; 1 microm) to kill NK1R-expressing neurones, (b) a novel conjugate of a monoclonal antibody to the serotonin transporter (SERT) and saporin (anti-SERT-SAP; 1 microm) to kill serotonergic neurones, or (c) SP-SAP and anti-SERT-SAP together to kill both types. Controls received IgG-SAP injections (1 microm). There was no double-labelling of NK1R-immunoreactive (ir) and tryptophan-hydroxylase (TPOH)-ir neurones. Cell (somatic profile) counts showed that NK1R-ir neurones in the SP-SAP group were reduced by 31%; TPOH-ir neurones in the anti-SERT-SAP group by 28%; and NK1R-ir and TPOH-ir neurones, respectively, in the combined lesion group by 55% and 31% (P < 0.001; two-way ANOVA; P < 0.05, Tukey's post hoc test). The treatments had no significant effect on sleep/wake time, body temperature, or oxygen consumption but all three reduced the ventilatory response to 7% inspired CO(2) in wakefulness and sleep by a similar amount. SP-SAP treatment decreased the averaged CO(2) responses (3, 7 and 14 days after lesions) in wakefulness and sleep by 21% and 16%, anti-SERT-SAP decreased the responses by 15% and 18%, and the combined treatment decreased the responses by 12% and 12% (P < 0.001; two-way ANOVA; P < 0.05, Tukey's post hoc test). We conclude that separate populations of serotonergic and adjacent NK1R-expressing neurones in the medulla are both involved in central chemoreception in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.