Abstract
Recent advancements in foundation models have shown significant potential in medical image analysis. However, there is still a gap in models specifically designed for medical image localization. To address this, we introduce MedLAM, a 3D medical foundation localization model that accurately identifies any anatomical part within the body using only a few template scans. MedLAM employs two self-supervision tasks: unified anatomical mapping (UAM) and multi-scale similarity (MSS) across a comprehensive dataset of 14,012 CT scans. Furthermore, we developed MedLSAM by integrating MedLAM with the Segment Anything Model (SAM). This innovative framework requires extreme point annotations across three directions on several templates to enable MedLAM to locate the target anatomical structure in the image, with SAM performing the segmentation. It significantly reduces the amount of manual annotation required by SAM in 3D medical imaging scenarios. We conducted extensive experiments on two 3D datasets covering 38 distinct organs. Our findings are twofold: (1) MedLAM can directly localize anatomical structures using just a few template scans, achieving performance comparable to fully supervised models; (2) MedLSAM closely matches the performance of SAM and its specialized medical adaptations with manual prompts, while minimizing the need for extensive point annotations across the entire dataset. Moreover, MedLAM has the potential to be seamlessly integrated with future 3D SAM models, paving the way for enhanced segmentation performance. Our code is public at https://github.com/openmedlab/MedLSAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.