Abstract
PurposeThis paper aims to propose a medium-term forecast model for the daily passenger volume of High Speed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume for multiple consecutive days (e.g. 120 days).Design/methodology/approachBy analyzing the characteristics of the historical data on daily passenger volume of HSR systems, the date and holiday labels were designed with determined value ranges. In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double Layer Parallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of the daily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result by weighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of daily passenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume to ensure the accuracy of medium-term forecast.FindingsAccording to the example application, in which the DLP-WNN model was used for the medium-term forecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the average absolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP) neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalized regression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for the medium-term forecast of the daily passenger volume of HSR.Originality/valueThis study proposed a Double Layer Parallel structure forecast model for medium-term daily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and Wavelet Neural Network. The predict results are important input data for supporting the line planning, scheduling and other decisions in operation and management in HSR systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.