Abstract

A complete set of elastic processes and induced gluon radiation within the higher-twist approach have been implemented in the Linear Boltzmann Transport model for jet propagation and interaction with quark-gluon plasma in high-energy heavy-ion collisions. We impose global energy momentum conservation in the 2→n processes of induced radiation which will influence the final gluon spectra. We will compare the elastic and the radiative energy loss of partons and their effects on reconstructed jets. The energy loss of a leading parton is found to have a quadratic distance dependence only for a short distance, but will have much weak distance dependence because of the accumulated energy loss and the strong energy dependence of the local energy loss rate. Since reconstructed jets recover some of the energy lost by the leading parton, the quadratic path length dependence persists for a longer distance. The spatial distribution and time evolution of the jet-induced medium excitation are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.