Abstract

AbstractMedium range order (MRO) and the formation of microcrystallites in a-Si:H prepared by plasma-enhanced chemical vapor deposition (PECVD) and hot-wire chemical vapor deposition (HWCVD) have been probed by systematic x-ray diffraction studies with films as thin as those used in solar cells. Effects of substrate temperature, hydrogen dilution, film thickness, and type of substrate have been examined. High-hydrogen-diluted films of 0.5 μm thickness, using optimized deposition parameters for solar cell efficiency and stability, are found to be partially microcrystalline (μc) if deposited directly on stainless steel (SS) substrates but are fully amorphous provided a thin (20 nm) n-layer of a-Si:H or μc-Si:H is first deposited on the SS. The latter predeposition does not prevent partially microcrystallinity if the films are grown thicker (1.5 to 2.5 μm) and this is consistent with a recently proposed phase diagram of thickness versus hydrogen dilution. Analysis of the first (lowest angle) scattering peak of the a-Si:H phase demonstrates that its width, directly related to MRO, is reduced by heavier hydrogen dilution in PECVD growth or by increased substrate temperature in HWCVD growth. The narrowest width of fully amorphous material correlates with better solar cell stability and this is not likely related to bonded hydrogen content since it is quite different in the optimized PECVD and HWCVD a-Si:H. A wide range of MRO apparently exists in the residual amorphous phase of the mixed a/μc material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.