Abstract

One of the proclaimed goals of heavy ion collisions with 100 MeV up to 2000 MeV per nucleon is the determination of the equation of state of nuclear matter, which one needs for example for neutron stars, supernova explosions and the early universe. But the situation in heavy ion collisions is quite different from thermal equilibrium with a spherical momentum distribution and a fixed temperature. The effective nucleon-nucleon interaction as determined for example by the solution of the Bethe-Goldstone equation depends through the Pauli operator and through the single particle energies on the surrounding nuclear matter. This dependence is especially pronounced since the nucleon-nucleon interacting is highly momentum dependent: It is attractive at small relative momenta and repulsive at higher values. Thus the effective nucleon-nucleon interaction in heavy ion colhsions depends on the distribution of the surrounding nuclear matter in orbital and momentum space. Here results are presented using for the description of heavy ion reactions at intermediate energies Quantum Molecular Dynamics (QMD) in a non-relativistic and in a completely covariant (RQMD) form. We show that the production of gamma-rays, pions and the inclusive spectra of nucleons and light nuclei are not sensitive to the equation of states. The most sensitive observable is the perpendicular momentum distribution in heavy ion collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.