Abstract

5,6-Dichloro-4-thia-5-hexenoic acid (DCTH) is a potent hepato- and nephrotoxin that induces mitochondrial dysfunction in rat liver and kidney. Previous studies indicate that DCTH undergoes fatty acid beta-oxidation-dependent bioactivation. The objectives of the present experiments were to elaborate the bioactivation mechanism of DCTH and to examine the interaction of the coenzyme A thioester of DCTH (DCTH-CoA) with the medium-chain acyl-CoA dehydrogenase. In the presence of the terminal electron acceptor ferricenium hexafluorophosphate (FcPF6), DCTH-CoA was oxidized by the medium-chain actyl-CoA dehydrogenase to give 5,6-dichloro-4-thia-trans-2,5-hexadienoyl-CoA. Enoyl-CoA hydratase catalyzed the conversion of 5,6-dichloro-4-thia-trans-2,5-hexadienoyl-CoA to 5,6-dichloro-4-thia-3-hydroxy-5-hexenoyl-CoA, which eliminated 1,2-dichloroethenethiol and gave malonyl-CoA semialdehyde as a product. Chloroacetic acid was detected as a terminal product derived from 1,2-dichloroethenethiol. Incubation of DCTH-CoA with the medium-chain acyl-CoA dehydrogenase in the absence of FcPF6 gave 3-hydroxypropionyl-CoA as the major product and resulted in the irreversible inactivation of the enzyme. Under these conditions, DCTH-CoA apparently undergoes a beta-elimination reaction to give 1,2-dichloroethenethiol and acryloyl-CoA, which is hydrated to give 3-hydroxypropionyl-CoA as the terminal product. The beta-elimination product 1,2-dichloroethenethiol may yield reactive intermediates that inactivate the dehydrogenase. Enzyme inactivation was rapid, DCTH-CoA concentration-dependent, and blocked by octanoyl-CoA, but not by glutathione. The medium-chain acyl-CoA dehydrogenase was not inactivated by acryloyl-CoA, and little inactivation was observed in the presence of FcPF6. These results show that DCTH-CoA is bioactivated by the mitochondrial fatty acid beta-oxidation system to reactive intermediates. This bioactivation mechanism may account for the observed toxicity of DCTH in vivo and in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.