Abstract

ObjectivesMapping the neurobiology of meditation has been bolstered by functional MRI (fMRI) research, with advancements in ultra-high field 7 Tesla fMRI further enhancing signal quality and neuroanatomical resolution. Here, we utilize 7 Tesla fMRI to examine the neural substrates of meditation and replicate existing widespread findings, after accounting for relevant physiological confounds. MethodsIn this feasibility study, we scanned 10 beginner meditators (N = 10) while they either attended to breathing (focused attention meditation) or engaged in restful thinking (non-focused rest). We also measured and adjusted the fMRI signal for key physiological differences between meditation and rest. Finally, we explored changes in state mindfulness, state anxiety and focused attention attributes for up to 2 weeks following the single fMRI meditation session. ResultsGroup-level task fMRI analyses revealed significant reductions in activity during meditation relative to rest in default-mode network hubs, i.e., antero-medial prefrontal and posterior cingulate cortices, precuneus, as well as visual and thalamic regions. These findings survived stringent statistical corrections for fluctuations in physiological responses which demonstrated significant differences (p < 0.05/n, Bonferroni controlled) between meditation and rest. Compared to baseline, State Mindfulness Scale (SMS) scores were significantly elevated (F(3,9) = 8.16, p < 0.05/n, Bonferroni controlled) following the fMRI meditation session, and were closely maintained at 2-week follow up. ConclusionsThis pilot study establishes the feasibility and utility of investigating focused attention meditation using ultra-high field (7 Tesla) fMRI, by supporting widespread evidence that focused attention meditation attenuates default-mode activity responsible for self-referential processing. Future functional neuroimaging studies of meditation should control for physiological confounds and include behavioural assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.