Abstract
Medical image fusion plays an important role in biomedical research and clinical diagnosis. In this paper, an efficient medical image fusion approach is presented based on pulse coupled neural network (PCNN) combining multi-objective particle swarm optimization (MOPSO), which solves the problem of PCNN parameters setting. Selecting mutual information (MI) and image quality factor (QAB/F) as the fitness function of MOPSO, the parameters of PCNN are adaptively set by the popular MOPSO algorithm. Computed tomography (CT) and magnetic resonance imaging (MRI) are the source images as experimental images. Compared with other methods, the experimental results show the superior processing performances in both subjective and objective assessment criteria.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have