Abstract

Medical Image analysis has gained momentum in the research since last ten years. Medical images of different modalities like X-rays, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound etc. are generated with an increase of 15% to 20% every year. Medical image analysis requires high processing power and huge memory for storing the medical images, processing them, extracting features for useful information and segment the interested area for analysis. Thus, here comes the role of deep learning which proves to be promising for medical image analysis. The major focus of the paper is on exploring the literature on the broad areas of medical image analysis like Image Classification, Tumor/lesion classification and detection, Organ/Sub-structure Segmentation, Image Registration and Image Construction/ Enhancement using deep learning. Paper also highlights the physiological and medical challenges to be taken care, while analyzing medical images. It also discusses the technical challenges of using deep learning for medical image analysis and its solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.