Abstract

AbstractEmerging semiconducting materials including colloidal quantum dots (CQDs) and organic molecules have unique photovoltaic properties, and their hybridization can result in synergistic effects for high performance. For realizing the full potential of CQD/organic hybrid devices, controlling interfacial properties between the CQD and organic matter is crucial. Here, the electronic band between the CQD and the polymer layers is carefully modulated by inserting an interfacial layer treated with several types of ligands. The interfacial layer provides a cascading conduction band offset (ΔEC), and reduces local charge accumulation at CQD/polymer interfaces, thereby suppressing bimolecular recombination; a thin thiol‐treated interfacial layer (≈6 nm) decreases shallow traps, resulting in higher short‐circuit current (JSC) and fill factor of hybrid solar cells. Based on these results, a high performance CQD/polymer hybrid solar cell is introduced that demonstrates a power conversion efficiency of 13.74% under AM 1.5 solar illumination. The hybrid device retains more than 90% of its initial performance after 402 days under ambient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call