Abstract
Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease (Volberding et al., 1990, The New England Journal of Medicine 322, 941-949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.