Abstract
Using a cross-sectional design, the purpose of this study was to determine how pennate gastrocnemius medialis (GM) muscle geometry changes as a function of adolescent age. Sixteen healthy adolescent males (aged 10-19 years) participated in this study. GM muscle geometry was measured within the mid-longitudinal plane obtained from a 3D voxel-array composed of transverse ultrasound images. Images were taken at footplate angles corresponding to standardised externally applied footplate moments (between 4 Nm plantar flexion and 6 Nm dorsal flexion). Muscle activity was recorded using surface electromyography (EMG), expressed as a percentage of maximal voluntary contraction (%MVC). To minimise the effects of muscle excitation, EMG inclusion criteria were set at <10% of MVC. In practice, however, normalised EMG levels were much lower. For adolescent subjects with increasing ages, GM muscle (belly) length increased due to an increase in the length component of the physiological cross-sectional area measured within the mid-longitudinal plane. No difference was found between fascicles at different ages, but the aponeurosis length and pennation angle increased by 0.5 cm year(-1) and 0.5° per year, respectively. Footplate angles corresponding to externally applied 0 and 4 Nm plantarflexion moments were not associated with different adolescent ages. In contrast, footplate angles corresponding to externally applied 4 and 6 Nm dorsal flexion moments decreased by 10° between 10 and 19 years. In conclusion, we found that in adolescents' pennate GM muscles, longitudinal muscle growth is mediated predominantly by increased muscle fascicle diameter.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have