Abstract

Pavlovian conditioned stimuli (CSs) play an important role in the reinforcement and motivation of instrumental active avoidance (AA). Conditioned threats can also invigorate ongoing AA responding [aversive Pavlovian–instrumental transfer (PIT)]. The neural circuits mediating AA are poorly understood, although lesion studies suggest that lateral, basal, and central amygdala nuclei, as well as infralimbic prefrontal cortex, make key, and sometimes opposing, contributions. We recently completed an extensive analysis of brain c-Fos expression in good vs. poor avoiders following an AA test (Martinez et al., 2013, Learning and Memory). This analysis identified medial amygdala (MeA) as a potentially important region for Pavlovian motivation of instrumental actions. MeA is known to mediate defensive responding to innate threats as well as social behaviors, but its role in mediating aversive Pavlovian–instrumental interactions is unknown. We evaluated the effect of MeA lesions on Pavlovian conditioning, Sidman two-way AA conditioning (shuttling) and aversive PIT in rats. Mild footshocks served as the unconditioned stimulus in all conditioning phases. MeA lesions had no effect on AA but blocked the expression of aversive PIT and 22 kHz ultrasonic vocalizations in the AA context. Interestingly, MeA lesions failed to affect Pavlovian freezing to discrete threats but reduced freezing to contextual threats when assessed outside of the AA chamber. These findings differentiate MeA from lateral and central amygdala, as lesions of these nuclei disrupt Pavlovian freezing and aversive PIT, but have opposite effects on AA performance. Taken together, these results suggest that MeA plays a selective role in the motivation of instrumental avoidance by general or uncertain Pavlovian threats.

Highlights

  • Instrumental active avoidance (AA) is a major mechanism for coping with threats

  • We examined a number of brain regions, we found that c-Fos expression correlated with freezing and AA behavior in only five regions: lateral amygdala (LA), basal amygdala (BA), central amygdala (CeA), infralimbic prefrontal cortex (IL-PFC), and medial amygdala (MeA)

  • We found that MeA lesions severely impaired ultrasonic vocalizations (USVs) responding in the AA context, even when the number of shocks was similar between MeA-lesion and Sham groups

Read more

Summary

Introduction

Instrumental active avoidance (AA) is a major mechanism for coping with threats. AA gives subjects control in dangerous situations and likely contributes to adaptive active coping strategies and resilience (LeDoux and Gorman, 2001). In a typical signaled AA paradigm, rats first learn that a conditioned stimulus (CS, sometimes called a “warning signal”; e.g., tone) predicts the occurrence of an aversive unconditioned stimulus (US; e.g., footshock). This Pavlovian phase transforms the CS into a threat that triggers defensive reactions (e.g., freezing). On subsequent trials, rats gradually learn to suppress Pavlovian reactions and emit a specific instrumental action (AR; e.g., shuttle) that terminates the CS and prevents US delivery. Conditioned threats play an important role in AA expression; once the instrumental contingency is acquired, CS presentations provide the motivation to perform the AR (Rescorla, 1990)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.