Abstract

Mechanochemical synthesis that uses transition-metal catalysts has attracted significant attention due to its numerous advantages, including low solvent waste, short reaction times, and the avoidance of problems associated with the low solubility of starting materials. However, even though the mechanochemical reaction environment is largely different from that of homogeneous solution systems, transition-metal catalysts, which were originally developed for use in solution, have been used directly in mechanochemical reactions without any molecular-level modifications to ensure their suitability for mechanochemistry. Alas, this has limited the development of more efficient mechanochemical cross-coupling processes. Here, we report a conceptually distinct approach, whereby a mechanochemistry-directed design is used to develop ligands for mechanochemical Suzuki-Miyaura cross-coupling reactions. The ligand development was guided by the experimental observation of catalyst deactivation via the aggregation of palladium species, a problem that is particularly prominent in solid-state reactions. By embedding the ligand into a poly(ethylene glycol) (PEG) polymer, we found that phosphine-ligated palladium(0) species could be immobilized in the fluid phase created by the PEG chains, preventing the physical mixing of the catalyst into the crystalline solid phase and thus undesired catalyst deactivation. This catalytic system showed high catalytic activity in reactions of polyaromatic substrates close to room temperature. These substrates usually require elevated temperatures to be reactive in the presence of catalyst systems with conventional ligands such as SPhos. The present study hence provides important insights for the design of high-performance catalysts for solid-state reactions and has the potential to inspire the development of industrially attractive, almost solvent-free mechanochemical cross-coupling technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call