Abstract
AbstractThe implementation of silicon (Si)‐containing negative electrodes is widely discussed as an approach to increase the specific capacity of lithium‐ion batteries. However, challenges caused by severe volume changes and continuous (re‐)formation of the solid‐electrolyte interphase (SEI) on Si need to be overcome. The volume changes lead to electrolyte consumption and active lithium loss, decaying the cell performance and cycle life. Herein, the additive 2‐sulfobenzoic acid anhydride (2‐SBA) is utilized as an SEI‐forming electrolyte additive for SiOx‐containing anodes. The addition of 2‐SBA to a state‐of‐the‐art carbonate‐based electrolyte in high‐voltage LiNi0.8Mn0.1Co0.1O2, NMC811||artificial graphite +20% SiOx pouch cells leads to improved electrochemical performance, resulting in a doubled cell cycle life. The origin of the enhanced cell performance is mechanistically investigated by developing an advanced experimental technique based on operando attenuated total reflection Fourier‐transform infrared (ATR‐FTIR) spectroscopy. The operando ATR‐FTIR spectroscopy results elucidate the degradation mechanism via anhydride ring‐opening reactions after electrochemical reduction on the anode surface. Additionally, ion chromatography conductivity detection mass spectrometry, scanning electron microscopy, energy dispersive X‐ray analysis, and quantum chemistry calculations are employed to further elucidate the working mechanisms of the additive and its degradation products.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have