Abstract

Polyamine Phosphate Nanoparticles (PANs) have great potential for the delivery of large therapeutics, such as plasmids and/or siRNAs. The formation of PANs by complexation of Poly(allylamine hydrochloride) (PAH) and phosphate ions from Phosphate Buffer (PB) was studied here, and how it is affected by the presence of phosphate ions from PB and ionic strength. From Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) the critical PB concentration for PANs formation was determined. Below this critical point, Small Angle X-ray Scattering (SAXS) studies revealed that small PAH-phosphate aggregates coexist with not complexed or weakly complexed polymer chains in solution and that the presence of the phosphate ions increases the Kuhn length of the polymer chains until that only spherical aggregates are present in solution. TEM, DLS and SAXS showed the increase of PANs size with ionic strength up to 250 mM NaCl. At higher NaCl concentrations, PANs disassemble into smaller aggregates. Isothermal Titration Calorimetry (ITC) showed that PAN formation is an exothermic process and the association of phosphates below the critical PB concentration is entropically controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.