Abstract

Carbothermal reduction is a reducing reaction involving carbonaceous materials at high temperatures. Oil sand fluid coke is a high-carbon byproduct of the thermal cracking of oil sand bitumen via a process called fluid coking. To lay a foundation for the development of a process that removes and converts sulfur dioxide into elemental sulfur, the kinetics of the carbothermal reduction of SO2 by coke at 700−950 °C was investigated using a packed-bed reactor. Analysis using the shrinking core model revealed that the overall process is controlled jointly by surface chemical reaction and diffusion in a product ash layer. The existence of the layer was confirmed by SEM examination of a cross section of spent coke particles. The activation energy of the overall reaction was found to be 154 kJ/mol, which is in a good agreement with literature values. The sulfur balance was analyzed with data obtained using a total sulfur analyzer and a gas chromatograph. SEM-EDS analysis indicated that the ash layer was low in sulfur. At the ash−coke interface, however, an accumulation of sulfur was found that was attributed to C−S complexes. The chemical states of sulfur in the spent coke were determined using an X-ray photoelectron spectrometer. The sulfur in the raw coke was likely dominated by its thiophenic forms, whereas the sulfur in the ash layer was likely sulfite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call