Abstract
Magnesium–sulfur batteries are considered as attractive energy-storage devices due to the abundance of electrochemically active materials and high theoretical energy density. Here we report the mechanism of a Mg–S battery operation, which was studied in the presence of simple and commercially available salts dissolved in a mixture of glymes. The electrolyte offers high sulfur conversion into MgS in the first discharge with low polarization. The electrochemical conversion of sulfur with magnesium proceeds through two well-defined plateaus, which correspond to the equilibrium between sulfur and polysulfides (high-voltage plateau) and polysulfides and MgS (low-voltage plateau). As shown by XANES, RIXS (resonant inelastic X-ray scattering), and NMR studies, the end discharge phase involves MgS with Mg atoms in a tetrahedral environment resembling the wurtzite structure, while chemically synthesized MgS crystallizes in the rock-salt structure with octahedral coordination of magnesium.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have