Abstract

Understanding the mechanistic interplay between the activity and stability of water splitting electrocatalysts is crucial for developing efficient and durable water electrolyzers. Ir-based materials are among the best catalysts for the oxygen evolution reaction (OER) in acidic media, but their degradation mechanisms are not completely understood. Here, through first-principles calculations we investigate iridium dissolution at the IrO2(110)/water interface. Simulations reveal that the surface-bound IrO2OH species formed upon iridium dissolution should be thermodynamically stable in a relatively wide potential window undergoing transformations into IrVI (as IrO3) at high anodic potentials and IrIII (as Ir(OH)3) at low anodic potentials. The identified high-valence surface-bound dissolution intermediates of Ir are determined to display greater OER activities than the pristine IrO2(110) surface in agreement with the experimentally observed high activity of an amorphous hydrated IrOx surface layer. Combined with recent experimental results, our simulations illuminate the mechanistic details of the degradation mechanism of IrO2 and how it couples to electrocatalytic OER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call