Abstract

The mechanism of anionic/cationic combination collector ST-8 for the efficient separation of spodumene and feldspar was investigated by flotation tests, surface tension measurements, zeta potential measurements and infrared spectroscopy analysis. The flotation results indicated that when the optimum molar ratio of sodium oleate and dodecylamine was 6:1–10:1 and pH = 8.5, the recovery of spodumene reached a maximum of 80% and that of feldspar reached about 24.5%. Zeta potential measurements showed that the negative shift of the kinetic potential on the surface of spodumene was much stronger than that on the surface of feldspar, indicating that the adsorption capacity of the combined collector on spodumene surface and feldspar surface was greatly different. From the surface tension as well as the synergistic parameters, there was a strong mutual attraction between dodecylamine and sodium oleate, and there was a significant synergistic effect between them. Infrared spectroscopy indicated that the combined collector chemisorbed on the mineral surface, and the intensity of the absorption peak after the action of spodumene was much stronger than that after the action of feldspar. The solution chemistry of the combined collector revealed that at pH 8.5, the positively charged ions RNH3+ and (RNH3+)22+ in dodecylamine and the negatively charged RCOO− and (RCOO−)22− ions in oleic acid form highly reactive complexes to interact with the mineral surface by electrostatic gravitation, thus achieving efficient separation of spodumene and feldspar. Finally, from the closed-circuit test results, a flotation index of 6.34% Li2O grade and 88.51% Li2O recovery was obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call