Abstract

Previous work has indicated that aluminum (Al) complexes supported by a bipyridine bisphenolate (BpyBph) ligand exhibit higher activity in the ring-opening copolymerization (ROCOP) of maleic anhydride (MAH) and propylene oxide (PO) than their salen counterparts. Such a ligand effect in Al-catalyzed MAH-PO copolymerization reactions has yet to be clarified. Herein, the origin and applicability of the ligand effect have been explored by density functional theory, based on the mechanistic analysis for chain initiation and propagation. We found that the lower LUMO energy of the (BpyBph)AlCl complex accounts for its higher activity than the (salen)AlCl counterpart in MAH/epoxide copolymerizations. Inspired by the ligand effect, a structure-energy model was further established for catalytic activity (TOF value) predictions. It is found that the LUMO energies of aluminum chloride complexes and their average NBO charges of coordinating oxygen atoms correlate with the catalytic activity (TOF value) of Al complexes (R2 value of 0.98 and '3-fold' cross-validation Q2 value of 0.88). This verified that such a ligand effect is generally applicable in anhydride/epoxide ROCOP catalyzed by aluminum complex and provides hints for future catalyst design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.