Abstract

The synthesis of a series of (alpha-diimine)NiR(2) (R = Et, (n)Pr) complexes via Grignard alkylation of the corresponding (alpha-diimine)NiBr(2) precursors is presented. Protonation of these species by the oxonium acid [H(OEt(2))(2)](+)[BAr'(4)](-) at low temperatures yields cationic Ni(II) beta-agostic alkyl complexes which model relevant intermediates present in nickel-catalyzed olefin polymerization reactions. The highly dynamic nature of these agostic alkyl cations is quantitatively addressed using NMR line broadening techniques. Trapping of these complexes with ethylene provides cationic Ni alkyl ethylene species, which are used to determine rates of ethylene insertion into primary and secondary carbon centers. The Ni agostic alkyl cations are also trapped by CH(3)CN and Me(2)S to yield Ni(R)(L)(+) (L = CH(3)CN, Me(2)S) complexes, and the dynamic behavior of these species in the presence of varied [L] is discussed. The kinetic data obtained from these experiments are used to present an overall picture of the ethylene polymerization mechanism for (alpha-diimine)Ni catalysts, including effects of reaction temperature and ethylene pressure on catalyst activity, polyethylene branching, and polymer architecture. Detailed comparisons of these systems to the previously presented analogous palladium catalysts are made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.