Abstract

Ammonia borane (NH3BH3, AB) has received extensive attention as a potential hydrogen storage medium, however hydrogen release mechanisms from AB are not well understood. AB follows different reaction routes if the dehydrogenation occurs in solvent or solid state, but a comparative study for AB dehydrogenation in these two states is not available. In this work, a detailed study of AB dehydrogenation mechanism in diglyme and solid state is presented, and a comprehensive reaction network for both cases is proposed. The experimental and DFT results suggest that two main reaction pathways occur; one involves cyclization of monomers which results in faster dehydrogenation at lower temperature, while the other involves propagation to acyclic intermediates which requires higher temperature to carry out the cyclization step. AB dehydrogenation in solid state was experimentally found to be initiated by B–N bond cleavage and not by direct dehydrogenation, which agrees with high level CCSD(T)/MP2 calculations reported previously. It was found that diglyme plays a significant role in hindering B–N bond cleavage of AB which facilitates the cyclization pathway. In solid state, experiments including labeled AB (ND3BH3) mapped out the source of hydrogen (from hydridic or protonic ends), and a clear difference in the degree of dehydrogenation from the two ends is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.