Abstract
Surfactants are widely used in many chemical industries and as primary components of cleaning detergents due to their specific characteristics, which in turn results in high pollution of domestic and industrial wastewaters by such substances. In this study, the mechanistic pathways of the adsorption of cationic benzyl-dimethyl-dodecyl ammonium bromide (BDDAB) and anionic sodium dodecyl sulfate (SDS) surfactants on kaolinite clay in water were investigated. The results showed that the adsorption of anionic surfactant (SDS) on kaolinite is better compared with cationic surfactant (BDDAB), wherein the ♦maximum adsorption capacity was found 161.4μmolg-1 and 234μmolg-1 for BDDAB and SDS, respectively. Adsorption kinetics were the best suited to pseudo-second-order model for both BDDAB and SDS with an adsorption rate constant of 0.028gμmol-1min-1 and 0.023gμmol-1min-1, respectively. Meanwhile, the adsorption of BDDAB by kaolinite showed that the isotherm adsorption tended to follow the Langmuir-Freundlich and Freundlich isotherm models. However, the SDS adsorption isotherm obeyed only the Langmuir-Freundlich model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have