Abstract

Characterizing the free energy landscape of water ionization has been a great challenge due to the limitations from expensive abinitio calculations and strong rare-event features. Lacking equilibrium sampling of the ionization pathway will cause ambiguities in the mechanistic study. Here, we obtain convergent free energy surfaces through nanosecond timescale metadynamics simulations with classical nuclei enhanced by atomic neural network potentials, which yields good reproduction of the equilibrium constant (pK_{w}=14.14) and ionization rate constant (1.369×10^{-3} s^{-1}). The character of transition state unveils the triple-proton transfer occurs through a concerted but asynchronous mechanism. Conditional ensemble average analyses establish the dual-presolvation mechanism, where a pair of hypercoordinated and undercoordinated waters bridged by one H_{2}O cooperatively constitutes the initiation environment for autoionization, and contributes extremely to the local electric field fluctuation to promote water dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.