Abstract

The reduction of carbon dioxide (CO2) to n-propanol (CH3CH2CH2OH) using renewable electricity is a potentially sustainable route to the production of this valuable engine fuel. In this study, we report that agglomerates of ∼15 nm sized copper nanocrystals exhibited unprecedented catalytic activity for this electrochemical reaction in aqueous 0.1 M KHCO3. The onset potential for the formation of n-propanol was 200-300 mV more positive than for an electropolished Cu surface or Cu(0) nanoparticles. At -0.95 V (vs RHE), n-propanol was formed on the Cu nanocrystals with a high current density (jn-propanol) of -1.74 mA/cm(2), which is ∼25× larger than that found on Cu(0) nanoparticles at the same applied potential. The Cu nanocrystals were also catalytically stable for at least 6 h, and only 14% deactivation was observed after 12 h of CO2 reduction. Mechanistic studies suggest that n-propanol could be formed through the C-C coupling of carbon monoxide and ethylene precursors. The enhanced activity of the Cu nanocrystals toward n-propanol formation was correlated to their surface population of defect sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.