Abstract

The limited anti-fungal activity of enzymatic hydrolysis lignin (EHL) has been a challenge in its direct application as a bamboo preservative. To address this issue, the cinnamaldehyde modification of EHL was carried out to introduce anti-fungal structures into the lignin matrix, effectively enhancing its anti-fungal activity. The results demonstrated that the minimal inhibitory concentrations of the modified lignin (EHL-DC) against Aspergillus niger significantly improved from 16 mg/mL to 1 mg/mL, with comparable enhancements in anti-fungal activity against other fungi. As a result of the modification, the EHL-DC is more prone to interact with fungal cell membranes, contributing to a roughened, shrunken hyphal surface and a decrease in mycelial biomass. Multiple characterization methods were employed to better grapple with the EHL-DC chemical changes. The nitrogen content increased from 2.3 % to 8.3 %, and alterations in elemental compositions further support the proposed reaction mechanism and its role in enhancing EHL's anti-fungal activity. This study offers novel insights into the high-value utilization of enzymatic hydrolysis lignin based on green chemistry principles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call