Abstract

Xylanases capable of degrading the crystalline microfibrils of 1,3-xylan that reinforce the cell walls of some red and siphonous green algae have not been well studied, yet they could prove to be of great utility in algaculture for the production of food and renewable chemical feedstocks. To gain a better mechanistic understanding of these enzymes, a suite of reagents was synthesized and evaluated as substrates and inhibitors of an endo-1,3-xylanase. With these reagents, a retaining mechanism was confirmed for the xylanase, its catalytic nucleophile identified, and the existence of -3 to +2 substrate-binding subsites demonstrated. Protein crystal X-ray diffraction methods provided a high resolution structure of a trapped covalent glycosyl-enzyme intermediate, indicating that the 1,3-xylanases likely utilize the (1)S(3) → (4)H(3) → (4)C(1) conformational itinerary to effect catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.