Abstract
Adsorptive removal of the emerging organic pollutant perfluorooctanoic acid (PFOA) from contaminated water using biochar is a promising cost-effective approach. To determine the stability of PFOA adsorption on biochar, the thermodynamic analysis of the adsorption-desorption behavior is essential. This study comprehensively investigated the adsorption and desorption of PFOA on biochars derived from maple sawdust, peanut shells and corn stalks, pyrolyzed at peak temperatures of 400, 600 and 800 °C. The findings indicated that the micropore volume of the biochars was key to PFOA adsorption, with peanut shell biochar produced at 800 °C showing the highest adsorption capacity of 16.75 mg/g, attributed to its larger micropore volume (0.22 m3/g). Thermodynamic analysis showed that the negative values of ∆G0 of PFOA adsorption ranged from −2.24 to −5.38 kJ/mol, confirmed that the process was spontaneous and involved physical pore-filling. However, the close similarity between the adsorption and desorption isotherms, coupled with a low hysteresis coefficient, clarified that the PFOA adsorption was unstable and prone to desorption. The thermodynamic insights from this study highlighted that lignin-rich biochar produced at high temperature with high micropore content was very favorable for the effective adsorptive removal of PFOA, while the long-term adsorption stability should not be overlooked in the remediation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.