Abstract

The functional significance of the interactions between proteins in living cells to form short-lived quaternary structures cannot be overemphasized. Yet, quaternary structure information is not captured by current methods, neither can those methods determine structure within living cells. The dynamic versatility, abundance, and functional diversity of G protein-coupled receptors (GPCRs) pose myriad challenges to existing technologies but also present these proteins as the ideal testbed for new technologies to investigate the complex inter-regulation of receptor-ligand, receptor-receptor, and receptor-downstream effector interfaces in living cells. Here, we present development and use of a novel method capable of overcoming existing challenges by combining distributions (or spectrograms) of FRET efficiencies from populations of fluorescently tagged proteins associating into oligomeric complexes in live cells with diffusion-like trajectories of FRET donors and acceptors obtained from molecular dynamics (MD) simulations. Our approach provides an atom-level picture of the binding interfaces within oligomers of the human secretin receptor (hSecR) in live cells and allows for extraction of mechanistic insights into the function of GPCRs oligomerization. This FRET-MD spectrometry approach is a robust platform for investigating protein-protein binding mechanisms and opens a new avenue for investigating stable as well as fleeting quaternary structures of any membrane proteins in living cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.